Sample size determination for group sequential test under fractional Brownian motion

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size

In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional ...

متن کامل

Sample size determination for logistic regression

The problem of sample size estimation is important in medical applications, especially in cases of expensive measurements of immune biomarkers. This paper describes the problem of logistic regression analysis with the sample size determination algorithms, namely the methods of univariate statistics, logistics regression, cross-validation and Bayesian inference. The authors, treating the regr...

متن کامل

Packing Measure of the Sample Paths of Fractional Brownian Motion

Let X(t) (t ∈ R) be a fractional Brownian motion of index α in Rd. If 1 < αd , then there exists a positive finite constant K such that with probability 1, φ-p(X([0, t])) = Kt for any t > 0 , where φ(s) = s 1 α /(log log 1 s ) 1 2α and φ-p(X([0, t])) is the φ-packing measure of X([0, t]).

متن کامل

Lacunary Fractional Brownian Motion

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2013

ISSN: 1935-7524

DOI: 10.1214/13-ejs830